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A unidirectional, discontinuous fibre composite is considered under conditions of steady 
state creep in the direction of reinforcement. The composite consists of noncreeping, 
discontinuous, perfectly aligned, uniformly distributed fibres which are perfectly bonded 
to a matrix obeying a power relation between stress and strain rate. Expressions for the 
interface stress, the creep velocity profile adjacent to the fibres and the creep strength 
of the composite are derived. Previous results for the creep strength, cr c obtained for 
composites of the same type are briefly reviewed and compared with the present result. 
It is shown that all results reduce to the same general expression 
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in which/9 is the fibre aspec t  ratio, i is the compos i te  creep rate, gf is the fibre volume 
fraction, cr 0, e0 and n are the cons tan ts  in the matrix creep law. The  creep strength 
coefficient c~ is found to be very weakly dependen t  on Vf and practically independent  of n 
when n is greater  than about  6. 

1. Introduction 
It has become well established over the past 
decade that the resistance to creep at elevated 
temperatures of a metal matrix can be enhanced 
by the addition of creep resistant fibres [1-4]. 
Considerable effort has, therefore, been directed 
toward the development of mathematical models 
describing this enhancement in terms of the 
parameters specifying the constitution of the 
composite. 

Mileiko [5] proposes a model which extends 
under simple shear of the matrix and with no 
matrix contribution to the tensile load supported 
by the model. A small matrix contribution is 
included in Kelly and Street's model [6] which 
is based on the assumption of a uniform shear 
strain-rate in the matrix. McLean [7] employs 
the same assumption, but derives the creep 
strength from an energy consideration, and 
points out that the matrix contribution usually is 
fairly large. In fact, he concludes that the tensile 
load is approximately equally divided between 
fibres and matrix independently of relative 
volume fractions, as long as flow occurs in the 
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matrix. This is a result of the constraint effect 
observed in tensile experiments by Kelly and 
Lilholt [8 ]. As the matrix deforms plastically, its 
transverse contraction is constrained by the 
surrounding fibres which are normally l ess  
compliant. In Kelly and Lilholt's experiments 
this caused a very high apparent tensile stress in 
the matrix, which disappeared when the fibres 
yielded, and hence the transverse contractions 
became the same. 

2. The model composite 
The approach described here is based on a 
model which we define by a number of assump- 
tions. The model consists of a matrix containing 
noncreeping, aligned, cylindrical fibres of diam- 
eter d and of length I. The aspect ratio O = lid 
is assumed to be sufficiently large that end effects 
may be ignored. The distribution of the fibres is 
random in a direction parallel to the fibre axis. 
In cross-sections normal to the fibre axes the 
fibres are uniformly distributed so as to form a 
hexagonal array. 

The creep behaviour of the matrix is assumed 
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to be described by the usual power relation 

= 70 ( l )  

relating the shear strain-rate, ~,, to the shear 
stress "r. The constants, 70, "ro, and n are related 
to those obtained in a tensile creep test, Co, (to, 
and m, by [6] 

3 1 
7o = ~ Eo,"ro = ~ (to, n = m .  (2) 

The adhesion between fibres and matrix is 
thought to be perfect, so that no relative sliding 
can occur at the interfaces during creep of the 
composite. 

2.1. The stress system 
In a condition of steady state creep the matrix is 
assumed to extend at the constant rate, ~, at 
points midway between two fibres. Taking z = 0 
at a fibre centre (Fig. 1) this results in a velocity 
iz relative to the rigid fibre. Since unlimited 
interface strength is assumed, the relative velocity 
must decrease to zero at the interface. This is 
what causes load to be exchanged between the 
components by means of  the interface stress, 
"ri. Previous authors [5-7] all found that the 
interface stress is nearly constant along the 
major portion of the fibre length when the stress 
exponent, n, is greater than about 4. Since the 
tensile load on the fibre is found by integrating 
"ri f rom the fibre end to the point in question, 
this results in a nearly linear variation of the 
tensile load on the fibre along its length. 

In discussing the distribution of tensile load 
between the components, McLean points out that 
the tensile load on the matrix can be obtained 
by a similar integration of "ri f rom the fibre 
centre. For  higher n-values the tensile load in the 
matrix consequently rises almost linearly f rom 
the fibre centre. McLean further concludes that 
the tensile load of the composite is roughly 
equally divided between matrix and fibres 
irrespective of volume fractions. This is in 
marked contrast to the case in which the matrix 
does not yield plastically. Here there is normally 
a preferential loading of the fibres. 

In view of  the above it appears that reasonable 
simple assumptions regarding the stress system 
can be stated by the following: 

1. the tensile stress supported by the matrix 
varies linearly from fibre centre to fibre end at a 
constant rate given by 

8(7 2C~m 
- (3) 
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where am denotes the greatest tensile stress in the 
matrix; 

2. the tensile load carried by the composite is 
nearly equally divided between the components 
at any fibre volume fraction, Vf. The creep 
strength, therefore, merely becomes twice the 
load supported by the fibres, ~e = 25~Vv When 
linear variation of tensile stress in the fibre is 
assumed, the average stress 5f is given by 
5~ = I/2 crf, where ~f is the tensile stress at the 
fibre centre. We shall therefore assume that 

o 'e  = Vfo ' f  = (1  - -  V f ) o ' m  . ( 4 )  

2.2. The  s t r e s s  t ransfer  
The geometry and the stress system of the model 
composite are illustrated by Fig. 1. The two 

d(r,~z) I = (~ (r',z+Az) 

1;i=%(d/21z) ~ I r' 

T-I  . . . .  

~(r,z) 

Figure 1 The stresses acting on a thin circular slice of 
matrix material. 

hatched rectangles represent a thin circular slice 
of  matrix. By integrating the stresses exerted on 
this slice we can obtain the z-component of the 
total force acting on it. The exact result for a 
single fibre embedded in the matrix is 

~ 2r-r - "rid + 2 r '  A z .  ~a ~z  dr '  

In a state of  mechanical equilibrium the total 
force is zero, and in an attempt to average we 
shall represent the equilibrium equation of the 
model by 

i ~a+h 2am 
2r"r -- r i d  + 2 r dr = 0 (5) 

O~d "-7- 
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We have employed Equation 3 and further set h 
equal to half the minimum surface-to-surface 
distance between fibres in the model composite. 
Because of the assumed hexagonal distribution, 
h is therefore written 

df (2~/3  V,) -v2 - 1}.  (6) h=2L\ 
Using Equations 4, 5, and 6 we find 

T i * d  

r = 2r (7) 

where 

T i  ~ ---~ ,'Fi 
r Vr 
2l 1 -  Vr 

3. The radial velocity profile 
The matrix shear stress is given by Equation 7 
and the response to shear stress by Equation 
1 in which ~ is related to the relative velocity, u, 
between fibres and matrix through 

Du 
9 = ~r" (8) 

Using Equation 2 the rate of increase of u with 
increasing distance from the interface can, 
therefore, be written 

~u 3 (ri *d']'* 
a,--" = 72 % - -  " ( 9 )  \ ~or / 

By integrating au/ar with respect to r and 
employing the condition that there is no sliding 
at the interface, we find the velocity profile 

where 

"* = 4 \ .  - 1} \ 

The reduced velocity, u/u* is plotted as a function 
of rid in Fig. 2 for a number of values of n. It is 
seen that the creep of the matrix is opposed only 
in the rather close vicinity of the fibres in the 
model composite, when n is not too small. 

Street [9] has observed the velocity profile on 
the surface of a composite consisting of lead 
reinforced by phosphor-bronze plates. The 
surface was initially intersected by straight 
marker lines and then subjected to creep. A 
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Figure 2 Profiles of reduced velocities, u/u*, adjacent to 
the fibre-matrix interface, as predicted by Equation 10. 

Figure 3 Optical micrograph of the tensile creep of lead 
embedding a noncreeping phosphor-bronze plate. The 
originally straight marker lines labelled A, B, C are just 
visible in the shear zone (Street [9]). 

micrograph of the surface after creep is re- 
produced in Fig. 3. The straight marker lines 
have been deformed into curved lines giving 
evidence of a localized shear zone. Street [9] 
reports a value n = 14 for the lead matrix so the 
slope of the marker lines appears to be less than 
that of the velocity profiles of the model. This is 
undoubtedly a consequence of the idealized 
shear stress variation of the model, since a 
power relation causes the creep rate to depend 
quite strongly on stress. However, one might 



C R E E P  S T R E N G T H  O F  D I S C O N T I N U O U S  F I B R E  C O M P O S I T E S  

indeed expect the localization of shear to be less 
pronounced when the reinforcing members are 
plates rather than fibres. 

4. The composite creep strength 
The creep rate in the matrix was seen in the 
foregoing section to be disturbed only close to 
the fibre-matrix interface. In deducing the shear 
stress exerted on the interface we shall therefore 
disregard the presence of other fibres and employ 
the relationship 

u(r,z)--* ~z as r - +  Go (11) 
which applies when n is greater than 1. By 
combining this and Equation 10 we find 

where 

/3 = ~ (n - 1) 1/"- 

Equation 12 has a formal similarity to Kelly and 
Street's result for the interface stress, but in the 
present case /3 is not a function of volume 
fraction. 

According to assumption 2 (Section 2.1) we 
can express the creep strength as ~e = crfV~, 
where (rf is determined by the force balance 4/? 

crf = at ri dz .  (13) 

The interface stress is given in terms of af by 
Equations 7a, and 12, so by substituting for ~-i in 
Equation 13 we find the composite creep 
strength 

(~ l ln  
~e = ~Vr~o -- pa+l/n (14) 

\ E o /  

where 

(1 - vr) 

In the next section it will be seen that the creep 
strength coefficient, ~, is approximately con- 
stant. 

5. Discussion and conclusions 
The models developed by Mileiko, Kelly and 
Street, McLean, and the author all represent 
what might be called a perfect composite: fibres 

and matrix are fully adhering, the fibres are 
noncreeping, chemically stable, perfectly aligned, 
and evenly distributed. It is, therefore, interes- 
ting to compare the predictions these models 
give for the creep strength. It turns out that a 
comparison may be made very conveniently 
because a remarkable similarity exists between 
the results. By introducing the notation used in 
this paper and rearranging we can express the 
creep strength by Equation 14 for all models 
with expressions for the coefficients given by: 

(McLean) 

) 0~1 - -  ~rf 2 Vf  - -  2 " 

(present model) 

(1 - va ( 2 ~  n ( n -  1)~" 
c%= 1 - V r  (2f_~3 gf) -1/4 ~k~J n -1- l 

(Kelly and Street) 

~ '  - 2 n  + 1 LS\-#- v, - 

(Mileiko) 

= ( 1  n - 1  ~1/. 

+ (1 - v f )  p 
n + l  

tt 

In McLean's coefficient, s has been replaced by 
2h where h is given by Equation 6. The expres- 
sions for the coefficients have been computed as 
functions of Vf for four n-values ranging from 
rather small, 3 and 6, to rather greater, 9 and 12. 
Kelly and Street's coefficient is shown for 
p = 50 (dashed curve) and p = oo (solid curve). 
Although the p-dependence is quite significant 
at small Vf-values it is seen to be fairly un- 
important when Vf is greater than about 20 %. 

It is evident from Fig. 4 that all creep strength 
coefficients are nearly independent of n when 
n > 6. The variation of ~ with Vf is also seen to 
be quite small so it seems reasonable simply to 
represent the coefficients by 

~1 = 1.5 
~ 2  = 1.2 
~a = 0.4 
~ = 0.3 

which roughly corresponds to the e-values at 
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Figure 4 The creep strength coefficients, o~i. Index i refers 
to each curve as indicated (1, McLean, 2, present model, 3, 
Kelly and Street, 4, Mileiko). Kelly and Street's coeffi- 
cient has been computed for p = 50 (dashed curve) and 
p = oe (solid curve). 

Vf = 50% and  n = 12. The only impor t an t  
po in t  a t  which the four  models  fail to agree is 
therefore  in predic t ing  the creep s t rength 
coefficient. However ,  the predic ted  coefficients 
seem to increase wi th  increasing assumed matr ix  
cont r ibut ion ,  this could  explain par t  of  the 
disagreement .  Excellent  agreement  is seen 
between ~1 and ~2 which bo th  take full account  
o f  the matr ix  and the general  expression 

( ~ ~lln 
ae = o~VfG o -- pl+l/n 

\%1 
where ~ is approx imate ly  cons tant  and  near  
uni ty  seems to be very well suppor ted  by  
theory,  since it emerges f rom all four  t reat-  
ments.  Once the general  expression has been 
exper imental ly  verified, the decision between the 
var ious  models  can, therefore,  be made  simply by  
measur ing  the creep s t rength coefficient. 
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